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This paper obtains exact 1-soliton solution to the nonlinear Schrödinger's equa5tion with spatio -temporal dispersion, in 
addition to usual group-velocity dispersion, by the aid of Kudryashov's method. There are four types of nonlinearity that are 
studied. These are Kerr law, power law, parabolic law and dual-power law. Bright, dark and singular soliton solutions are 
obtained. 
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1. Introduction 

 

Optical soliton molecules form the basic fabric in 

communication industry for trans -continental and trans-

oceanic distances. These solitons are the outcome of a 

delicate balance between dispersion and nonlinearity [1-

20]. The basic model that describes this engineering 

dynamics is the nonlinear Schrödinger's equation (NLSE). 

This paper considers NLSE with spatio-temporal 

dispersion (STD) in addition to the usual group-velocity 

dispersion (GVD). The inclusion of STD makes the 

problem of optical soliton transmission well-posed as 

introduced in 2012 [6]. Additionally, STD addresses the 

aspect of Internet bottleneck that is a growing problem 

during current time due to a surge in Internet activity.  

Integrability of NLSE is one of the basic issues that 

need to be addressed. Obtaining an exact 1-soliton solution 

is imperative for NLSE. These exact soliton solutions play 

an important role in communications industry. This paper 

is thus going to retrieve exact 1-soliton solutions to the 

governing NLSE with four forms of nonlinear media. 

These are Kerr law, power law, parabolic law and dual-

power law nonlinearity. The integration technique that is 

implemented in this paper is known as Kudryashov's 

method. Bright, dark and singular soliton solutions are 

obtained for these forms of nonlinear media. 

 

 

 

2. Governing equation 

 
The dimensionless form of NLSE with STD is given 

by [7, 8]  

 

 2| | 0t t x x xi q a q bq c F q q                    (1) 

 

where x  represents the non-dimensional distance along 

the fiber while, t  represents temporal variable in 

dimensionless form and a  and b  are real valued 

constants. The dependent variable ( , )q x t  is a complex 

valued soliton profile. On the left side of this equation the 

first term represents the evolution term, while the 

coefficient of a  is STD and coefficient of b  is GVD. It is 

the inclusion of this STD makes the governing NLSE 

well-posed as was indicated a couple of years ago [6]. 

Also,  c  is the coefficient of the nonlinear term where the 

functional F  represents the non-Kerr law nonlinearity in 

general. Solitons are the outcome of a delicate balance 

between dispersion and nonlinearity from equation (1). 

In Eq. (1), F  is a real-valued algebraic function and 

one needs to have smoothness of the complex-valued 

function  2| | : .F q q C C  Considering the complex 

plane C  as a two-dimensional linear space 2 ,R  the 
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function  2| |F q q  is k  times continuously 

differentiable, and consequently  

 

      2 2

, 1

| |   , , ; .k

m n

F q q C n n m m R




          (2) 

 

3. Soliton solutions 

 
In order to solve Eq. (1) by the Q-function method [5], 

we use the following wave transformation  

 
 ,

( , ) ( )
i x t

q x t U e


                                            (3) 

 

 where ( )U   represents the shape of the pulse and  

 

  ,x v t                                     (4) 

  

 , .x t x t                        (5) 

 

 In Eq. (3), the function  ,x t  represents the phase 

component of the soliton. Then, in Eq. (5),   is the 

soliton frequency, while   is the wave number of the 

soliton and   is the phase constant. Finally, in Eq. (4), v  

is the velocity of the soliton. The definition of the 

parameter   is based on the type of soliton considered. 

For bright solitons, it represents inverse width, while for 

dark and singular solitons, it represents a free parameter. 

Substituting Eq. (3) into Eq. (1) and then decomposing 

into real and imaginary parts yields a pair of relations. The 

imaginary part gives  

 

2
,

1

a b
v

a

 







                         (6) 

 

while the real part gives  

 

   

 

2 2

2 0.

b av U a b U

cF U U

       


        (7) 

 

Here U 
 represents 

2

2

d U

d
. The relation (6) gives the 

velocity of the soliton in terms of the wave number while 

Eq. (7) can be integrated to compute the soliton profile 

provided the functional F  is given. 

The improved NLSE, that is with STD, will be 

considered for the following four forms of nonlinearity as 

discussed in the following four subsections. The aim of 

this paper is to find exact solution of the Eq. (1) by using 

Kudryashov's method [5]. 

 

3.1. Kerr law 

 
The Kerr law of nonlinearity originates from the fact 

that a light wave in an optical fiber faces nonlinear 

responses from non-harmonic motion of electrons bound 

in molecules, caused by an external electric field. Even 

though the nonlinear responses are extremely weak, their 

effects appear in various ways over long distance of 

propagation that is measured in terms of light wavelength. 

The origin of nonlinear response is related to the 

nonharmonic motion of bound electrons under the 

influence of an applied field. As a result the induced 

polarization is not linear in the electric field, but involves 

higher order terms in electric field amplitude. 

The Kerr law nonlinearity is the case when 

( ) ,F u u  so that Eq. (1) reduces to [7-10]  

 
2

0t t x x xi q a q bq c q q                            (8) 

 

 and Eq. (7) simplifies to  

 

   2 2 3  0.b av U a b U cU         (9) 

 

By means of the Q  function method, we can look for 

exact solutions of Eq. (9) in the form of the following 

power series [5]  

 

0
0

1
( ) ( ),    ( ) ,

1

M
l

l

l

U A Q Q
e

 
  

 


 


       (10) 

 

where M  is a positive integer, in most cases, that will be 

determined and 0  is an arbitrary constant. To determine 

the parameter M , we usually balance the linear terms of 

highest order in the resulting equation with the highest 

order nonlinear terms. 

 

One can see that the function ( )Q   is solution of the 

equation  

 
2.Q Q Q                                (11) 

 

Equation (11) allows us to obtain U

 and U


 using 

polynomials of Q . The balancing procedure yields 

1M  . Thus, to look for the solution of Eq. (9) we can 

use following formulae  

 

 0 1( ) ( ).U A A Q                  (12) 

 

Substituting Eqs. (12) into Eq. (9), collecting all terms 

with the same powers of ( )Q   and setting each 

coefficient to zero, we obtain a system of algebraic 

equations for 0 1,  ,  ,  , A A v   and   as follows.  
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3( )Q   coeff.:  

 

 2 3

1 12 0,b a v A c A     

 
2 ( )Q   coeff.:  

 

 2 2

1 0 13 3 0,b a v A c A A     

 
1( )Q   coeff.:  

 

 

 

2 2

1 0 1

2

1

3

0,

A b av cA A

a b A



  

  

  
                    (13) 

  
0 ( )Q   coeff.:  

 

 3 2

0 0 0.c A a b A       

 

Solving this system with the aid of Maple gives  

 

2

0

2

1

2

,  

2 , 

2( )
  ,

b a
A

c

b a
A

c

b a

av b

  

  

  


 
 

 


 
 



                   (14) 

 

where   and   are arbitrary constants. Substituting the 

solution set (14) into Eq. (12), the exact solutions of Eq. 

(8) can be written as: 

 

Type-1: When   2 0a b av b      , we 

have 

 

(1) Dark 1-soliton solution:  

 

 
   

2

1,2

2

( , )  tanh

2

i x t

a b
q x t

c

a b
x vt e

av b

  

  

     

 
 

  
 

  

        (15) 

  

(2) Singular 1-soliton solution:  

 

 
   

2

3,4

2

( , )  coth

2

i x t

a b
q x t

c

a b
x vt e

av b

  

  

     

 
 

  
 

  

     (16)  

 

Type-2: When   2 0a b av b      , we 

have the following singular periodic solutions  

 

 
   

2

5,6

2

( , )  tan

2

i x t

a b
q x t

c

a b
x vt e

av b

  

  

     

 
 

  
 

  

         (17) 

  

 
   

2

7,8

2

( , )  cot

2

i x t

a b
q x t

c

a b
x vt e

av b

  

  

     

 


  
 

  

     (18) 

 

It needs to be noted that the singular periodic 

solutions that are listed in Type-2 are not applicable in 

optics. However, these solutions that appear as a by-

product are listed for completeness. 

 
3.2. Power law 

 

Power law nonlinearity is exhibited in various 

materials including semiconductors and is also viewed as a 

generalized version of Kerr law nonlinear medium. In this 

case [7-10]  

 

( ) nF u u                                 (19) 

 

so that Eq. (1) collapses to  

 
2

0.
n

t t x x xi q a q bq c q q                              (20) 

 

Here in Eq. (20) the parameter n  dictates the power law 

nonlinearity. For stability issues, one needs  

 

0 2n                                         (21) 

 

and in particular 2n   to circumvent self-focusing 

singularity. 

 

In this subsection, we would like to extend the 

functional variable method to solve the improved NLSE 

with power law nonlinearity. Substituting Eq. (3) into Eq. 

(20) and then decomposing into real and imaginary parts 
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yields a pair of relations. The imaginary part gives (6), and 

real part leads to  

 

   2 2

2 1  0.n

b av U a b U

cU

   



    



      (22) 

 

According to the previous steps, using the balancing 

procedure between  U 
 and 

2 1nU 
 in Eq. (22) we get  

 

1
2 (2 1) 2 2 .N n N n N N

n
        

 

To obtain an analytic solution, we use the 

transformation 

1

2nU V  in Eq. (22) to find  

 

    
 

22

2 2 2 2 3

(1 2 ) 2

4 4   0.

b av n V nVV

a b n V cn V



  

    

   
      (23) 

 

Suppose that the solutions of Eq. (23) can be 

expressed by a polynomial in ( )Q   as follows:  

 

0

( ) ( ),
M

l

l

l

V A Q 


                        (24) 

 

where la  are real constants with 0MA   and M  is a 

positive integer which can be determined by balancing the 

highest order derivative term with the highest order 

nonlinear term after substituting ansatz (24) into Eq. (23), 

where ( )Q   satisfies Eq. (11). 

 

Balancing the order of V V   and 
3V  in Eq. (23), we 

have 2N  . Therefore; Eq. (23) can be rewritten as  

 
2

0 1 2( ) ( ) ( ).V A A Q A Q                  (25) 

 

Substituting Eq. (25) in Eq. (23) and setting all the 

coefficients of powers ( )Q   to be zero, then we obtain a 

system of nonlinear algebraic equations and by solving it, 

we obtain  

 

 

0

2

1 2 2 2 2 2 2 2

2

2 2 2 2 2 2 2 2

2 2 2 2 3 2

2 2 2 2 2 2 2

0,

4 ( 1)
,

( 8 4 4 )

4 ( 1)
,

( 8 4 4 )

4 4
.

4 8 4

A

n b
A

c n a a n n a

n b
A

c n a a n n a

b n n a a

n n a a n a



  



  

    


  






   


 

   

  


  

     (26) 

where   and   are arbitrary constants. 

Substituting the solution set (26) into (25), the 

solution formulae of Eq. (23) can be written as  

 

 

2

2 2 2 2 2 2 2

2

4 ( 1)
( )

( 8 4 4 )

( ) ( ) .

n b
V

c n a a n n a

Q Q




  

 




   



     (27) 

Using the transformation 

1

2nU V , we can obtain 

the following exact solution of Eq. (20): 

 

 

 

1
2 2

2 2 2 2 2 2 2

2

( 1)
 

( 8 4 4 )
( , )

2

,

n

i x t

n b

c n a a n n a
q x t

sech x vt

e
  



  



  

 
 

   
 
  

  
  

(28) 

where   is given by (26). 

 

3.3. Parabolic law 

 
For parabolic law nonlinearity,  

 
2

1 2( )F u c u c u                            (29) 

 

 where 1c  and 2c  are constants. Therefore, Eq. (1) takes 

the form [2, 7-12]  

 

 2 4

1 2 0.t tx xxiq aq bq c q c q q                  (30) 

 

In this case, Eq. (7) simplifies to  

 

   2 2

3 5

1 2    0.

b av U a b U

c U c U

      

  
                 (31) 

 

Balancing U


 with 
5U  in Eq. (31) we have  

 

1
2 5 2 4 .

2
M M M M       

 

To obtain an analytic solution, we use the 

transformation 

1

2U V   in Eq. (31) to find  

 

    
 

2
2

2 2 3 4

1 2

2

4 4   4   0.

b a v V V V

a b V c V c V



  

   

    

 (32) 
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Balancing V V   with 
4V  in Eq. (32) we find that 

1.M   This implies  

 

 0 1( ) ( ).V A A Q                 (33) 

 

Substituting Eq. (33) in Eq. (32) and setting all the 

coefficients of powers ( )Q   to be zero, then we obtain a 

system of nonlinear algebraic equations and by solving it, 

we obtain 

 

Case-I:  

1 1
0 1

2 2

2 2

1

2

3 3
0,   ,   ,

4 2 3 ( )

3
.

16 ( 1) 1

c c
A A

c c va b

c b

c a a






 

    


 
 

        (34) 

  

 Substituting the solution set (34) into Eq. (33), a kind of 

kink-type solitary solution of Eq. (30) can be written as  

 

 

 

1

2

1

1

2

2

1 tanh
3

( , ) 3
8

4 3 ( )

,
i x t

c
q x t c

x vtc
c av b

e
    

   
   

    
         

(35) 

 where  

 
2 2

1

2

3
2

16 ( 1) 1
.

1

c b
a b

c a a
v

a




 



 
  

  


                (36) 

 

and  

 
2 2

1

2

3

16 ( 1) 1

c b

c a a




 
 

 
                                    (37) 

 

 Case-II:  

 

1 1 1
0 1

2 2 2

2 2

1

2

3 3 3
,   ,   ,

4 4 2 3 ( )

3
.

16 ( 1) 1

c c c
A A

c c c va b

c b

c a a






 

    


 
 

   (38) 

 

Substituting the solution set (38) into Eq. (33), a 

topological soliton solution of Eq. (30) can be written as  

 

 

 

1

2

1

1

2

2

1 tanh
3

( , ) 3
8

4 3 ( )

,
i x t

c
q x t c

x vtc
c av b

e
    

   
   

    
         

      (39) 

 

with v  and   given by (36) and (37) respectively. The 

solutions (35) and (39) are indeed dark soliton solutions to 

the governing NLSE with STD. 

 

3.4. Dual-power law 

 

This model describes solitons in photovoltaic-photo 

refractive materials such as
3LiNbO . For dual-power law 

nonlinearity [2, 7-12]  

 
2

1 2( ) n nF u c u c u                         (40) 

 

where 1c  and 2c  are constants. Therefore, Eq. (1) 

reduces to  

 

 2 4

1 2 0
n n

t tx xxiq aq bq c q c q q                (41) 

 

so that, for 1n  , dual-power law collapses to the 

parabolic law. In this case, Eq. (7) simplifies to  

 

   2 2

2 1 4 1

1 2    0.n n

b av U a b U

c U c U

   

 

    

 
   (42) 

 

Balancing U


 with 
4 1nU 

 in Eq. (42) we have  

1
2 (4 1) 2 4 .

2
M n M nM M

n
        

To obtain an analytic solution, we propose a 

transformation denoted by 

1

2nU V . Then Eq. (42) is 

converted to  

    
 

22

2 2 2 2 3 2 4

1 2

2 (1 2 )

4 4   4   0.

b av nVV n V

n a b V n c V n c V



  

    

    

  (43) 

 

Balancing V V   with 
4V  in Eq. (43) we find that 

1.M   This means  

 0 1( ) ( ).V A A Q                (44) 

 

Substituting Eq. (44) in Eq. (43) and setting all the 

coefficients of powers ( )Q   to be zero, then we obtain a 

system of nonlinear algebraic equations and by solving it, 

we obtain 
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Case-I:  

 

1 1
0 1

2 2

2 2

1

2

2

(1 2 ) 1 2
0,   ,   ,

2(1 ) 1 ( )

(1 2 )
.

4(1 ) ( 1) 1

n c nc n
A A

n c n c av b

n c b

n c a a






 

 
    

  


 

  

                                                                                        (45) 

 

Substituting the solution set (45) into Eq. (44), a kind 

of kink-type solitary solution of Eq. (41) can be written as  

 

 

 

1

2

1

1

2

2

1 tanh
(1 2 )

( , ) 1 2
4(1 )

2( 1) ( )

,

n

i x t

n c
q x t nc n

x vtn c
n c av b

e
    

   
  

               

                                                                                       (46) 

where  
2 2

1

2

2

(1 2 )
2

4(1 ) ( 1) 1
.

1

n c b
a b

n c a a
v

a




 



 
  

   


      (47)        

 and  
2 2

1

2

2

(1 2 )
.

4(1 ) ( 1) 1

n c b

n c a a




 


 

  
              (48) 

 

 Case-II:  

 

1 1
0 1

2 2

1

2

2 2

1

2

2

(1 2 ) (1 2 )
,   ,  

2(1 ) 2(1 )

1 2
,

1 ( )

(1 2 )
.

4(1 ) ( 1) 1

n c n c
A A

n c n c

nc n

n c av b

n c b

n c a a






 

 
  

 


 

 


 

  

         (49) 

 

Substituting the solution set (49) into Eq. (44), a kind 

of kink-type solitary solution of Eq. (41) can be written as  

 

 

 

1

2

1

1

2

2

1 tanh

(1 2 )
2( 1)( , )

4(1 )
1 2

( )

,

n

i x t

nc
n c

nq x t
n c

n
x vt

c av b

e
    

   
  

                      

      (50) 

 

where v  and   are defined in (47) and (48) respectively. 

The solutions represented by (46) and (50) are dark                   

1-soliton solutions to NLSE with STD in dual-power law 

medium. Finally, it is important to note that the soliton 

solutions given by (35), (39), (46) and (50) will exist for  

 

1 2 0c c   

and  

2( ) 0.c av b   

 
 

4. Conclusions 

 

This paper addressed the soliton solutions by the aid 

of Kudryashov's method. This is yet another integration 

algorithm that is applied to NLSE to retrieve soliton 

solutions. This method obtains bright, dark and singular 

soliton solutions to the NLSE that is considered with STD 

in addition to GVD. It is interesting to observe that Kerr 

law gives dark and singular solitons only, while power law 

nonlinearity leads to a bright soliton solution. Therefore 

bright soliton solution can be retrieved from power law 

nonlinearity after setting the power law nonlinearity 

parameter 1n  . Thus for Kudryashov's method, 

retrieving a bright 1-soliton solution for Kerr law 

nonlinearity is an indirect route. Then, for parabolic and 

dual-power laws of nonlinearity, it is only dark soliton 

solution that is retrievable, which gives the limitation of 

this approach. 

The results of this paper stand with a lot of promise in 

future. Later, soliton solutions of NLSE with perturbation 

terms will be obtained by the aid of Kudryashov's method. 

Additionally, this integration architecture will be 

implemented to study optical couplers as well as 

birefringent fibers and DWDM systems. These form a tip 

of the iceberg. The results of those research will be 

reported in due time. 
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